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ABSTRACT
Markov Chain Monte Carlo methods are widely used in Bayesian statistical inference
to sample from the posterior distribution from a target distribution. However, for
non-Gaussian and non-linear state space models, one can find difficulties in calculat-
ing the exact likelihood. To overcome problems in calculating the likelihood function,
it is possible to use approximations made by particle filter methods. Furthermore,
an adaptive Metropolis-Hastings algorithm may be applied since its proposal dis-
tribution is updated with previous draws from the posterior distribution. In this
way, this paper discusses the applicability of adaptive Metropolis-Hastings (AMH)
algorithms with random walk or independent proposals combined with estimated
likelihoods through particle filters. We also propose a few model comparison criteria
that can be easily integrated to the AMH. Moreover, we estimate non-linear and
non-Gaussian volatility models for three time series of real index returns.

KEYWORDS
Diminishing adaptation, sequential Monte Carlo methods, state space model

1. Introduction

Nowadays is almost impossible to analyze economic data without measuring volatil-
ity, often being considered more important than any other measure in a time series
of stock prices. However, the volatility is an unobservable measure and it has often
a property called the leverage effect phenomenon (possibly a negative correlation be-
tween return and volatility). Finally, it is important to keep in mind the volatility
clustering property.

In this paper, we fit historical series of daily log-returns of stock market indexes
with the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model
[5] with noise and the stochastic volatility (SV) model [12] and a few variants, including
the version with leverage effect. The unknowns of the models are estimated through
the Bayesian approach [2].

Markov Chain Monte Carlo (MCMC) simulation methods are widely applied to
sample from a joint probability distribution. These methods are generally used in
Bayesian inference where the posterior distribution of the unknown parameters is
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often difficult to calculate exactly. However, it is common to come across problems
when calculating the likelihood, commonly for non-linear non-Gaussian models, or in
situations where the choice of powerful proposals is not particularly easy.

When the likelihood does not have a closed form, we can approximate it using, for
example, the standard particle filter (or sequential importance resampling - SIR) of
Gordon et al. [8] and the auxiliary particle filter of Pitt and Shephard [14]. Moreover,
Andrieu et al. [1] proved that MCMC methods still converge to the correct posterior
distribution even if the simulated likelihood via SIR or ASIR is used.

To work around problems when choosing effective proposal distributions to use on
the MCMC method, we can apply a few adaptive Metropolis-Hastings (AMH) sam-
pling techniques. In such methods, the parameters of the proposal distribution are
tuned by using previous draws and the difference between these successive parameters
of the proposal converges to zero (diminishing adaptation). Important theoretical and
practical contributions to diminishing adaptation sampling were made by Haario et al.
[9], Haario et al. [10], and Roberts and Rosenthal [17] through the adaptive random
walk Metropolis sampling (ARWMS), and Giordani and Kohn [7] by the indepen-
dent Metropolis-Hastings sampling (AIMHS) with a proposal distribution based on a
mixture of normals.

Thus, we combine the two AMH schemes to either SIR or ASIR in order to estimate
the unknowns of the GARCH with noise and SV models. Our applications include a
small simulation study to verify if the combined algorithms recover the true values
of the parameters, and the estimation the parameters for the models applied to three
important stock market indexes. The results for real data are compared using marginal
likelihoods and a few likelihood-based information criteria.

The outline of this paper is organized as follows. Short backgrounds are given in
Sections 2, 3 and 4 about state space models and particle filters, adaptive Metropolis-
Hastings algorithms, and model selection, respectively. The GARCH model with noise
and the SV models are presented in Section 5. The applications are in Section 6.
Section 7 concludes.

2. State Space Models and Particle Filters

A state space model can be represented by an observation equation given by f(yt|xt; θ),
t = 1, . . . , n, and a system equation given by f(xt|xt−1; θ), t = 2, . . . , n, where θ
and f(.) represent a parameter vector and general probability (density) functions,
respectively. Note that, y1:n = (y1, . . . , yn) denote the history of measurements and
x1:n = (x1, . . . , xn) the history of states up to time n. The initial state x1 distribution
is given by f(x1|θ).

The main problem for a state space model is to evaluate the following integrals from
these equations:

f(xt|y1:t−1; θ) =

∫
f(xt|xt−1; θ)f(xt−1|y1:t−1; θ)dxt−1, (1)

which is used to update the posterior distribution at time t, that is,

f(xt|y1:t; θ) =
f(yt|xt; θ)f(xt|y1:t−1; θ)

f(yt|y1:t−1; θ)
, (2)
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and

f(yt|y1:t−1; θ) =

∫
f(yt|xt; θ)f(xt|y1:t−1; θ)dxt. (3)

In principle, the Equations (1)–(3) allow us, for a given θ, to obtain the likelihood
function of the observations y1:n,

f(y1:n|θ) = f(y1|θ)
n∏

t=2

f(yt|y1:t−1; θ). (4)

Except in a few cases such as linear Gaussian models, the integrals given in Equa-
tions (1)–(3) are in general hard to solve. To work around this problem, the SIR and
the ASIR can be used to approximate these distributions, in particular the likelihood
function.

2.1. Standard Particle Filter

The standard particle filter, also known as the sampling importance resampling (SIR)

method, was proposed by Gordon et al. [8]. Suppose that we have a sample x
(ℓ)
t−1,

ℓ = 1, . . . , L with probabilities π
(ℓ)
t−1 from f(xt−1|y1:t−1; θ). It is easy to notice that the

simplest values of π
(ℓ)
t−1 are 1/L. An approximation to Equation (1) is given by:

f(xt|y1:t−1; θ) ≈
L∑

ℓ=1

f(xt|x(ℓ)t−1; θ)π
(ℓ)
t−1. (5)

Therefore, f(xt|y1:t−1; θ) can be viewed as a mixture density with L components

where f(xt|x(ℓ)t−1; θ) represents the system equation conditional at each particle x
(ℓ)
t−1.

That would give us a sample x̃
(ℓ)
t , ℓ = 1, . . . , L, from the density f(xt|y1:t−1; θ). Now,

we can update the posterior distribution using Equation (2). We obtain a sample x̃
(ℓ)
t ,

ℓ = 1, . . . , L from f(xt|y1:t; θ) by assigning a probability of

π̃
(ℓ)
t =

f(yt|x̃(ℓ)t ; θ)π
(ℓ)
t−1∑L

j=1 f(yt|x̃
(j)
t ; θ)π

(j)
t−1

(6)

to x̃
(ℓ)
t . Thus, we have a sample x̃

(ℓ)
t , ℓ = 1, . . . , L with probabilities π̃

(ℓ)
t from

f(xt|y1:t; θ). Note that from Equations (1) and (2) the predictive function can be
approximated by

fs(yt|y1:t−1; θ) ≈
L∑

j=1

f(yt|x(j)t ; θ)π
(j)
t−1, (7)

which is a component of the likelihood function (an unbiased estimator of the likelihood
as shown in Pitt et al. [15]). Finally, we resample L values (with replacement) from

the particles x̃
(ℓ)
t with weights π̃

(ℓ)
t to obtain a sample from f(xt|y1:t; θ), then restarts

the procedure for time t+ 1.

3
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2.2. Auxiliary Particle Filter

The auxiliary particle filter (ASIR) of Pitt and Shephard [14] can be seen as a gener-
alization of the SIR method and the main idea is to sample from a higher dimension
joint density with the aid of an auxiliary variable. We note that from Equations (2)
and (5),

f(xt|y1:t; θ) ≈
L∑

ℓ=1

f(yt|xt; θ)f(xt|x(ℓ)t−1; θ)π
(ℓ)
t−1. (8)

Introducing an auxiliary variable ℓ which can be viewed as an index to the mixture
in Equation (8), we are able to adapt the particle filter in a more efficient way. The
density we wish to approximate becomes:

f(xt, ℓ|y1:t; θ) ∝ f(yt|xt; θ)f(xt|x(ℓ)t−1; θ)π
(ℓ)
t−1, for ℓ = 1, . . . , L, (9)

such that

f(ℓ|y1:t; θ) ≈
1

f(yt|y1:t−1; θ)

∫
f(yt|xt; θ)f(xt|x(ℓ)t−1; θ)dxtπ

(ℓ)
t−1

where

f(yt|y1:t−1; θ) ≈
L∑

ℓ=1

∫
f(yt|xt; θ)f(xt|x(ℓ)t−1; θ)dxtπ

(ℓ)
t−1. (10)

Now, if we are able to sample from f(xt, ℓ|y1:t; θ), then we can discard the sampled
values of ℓ and get back to our filtering density in Equation (8). The next step is to sam-
ple from f(xt, ℓ|y1:t; θ) using sampling importance resampling algorithm. That is, we

make K proposals (x
(k)
t , ℓ(k)), k = 1, . . . ,K from some proposal density g(xt, ℓ|y1:t; θ)

and compute the weights

π̃
(k)
t =

1

fa(yt|y1:t−1; θ)
×

f(yt|x(k)t ; θ)f(x
(k)
t |x(ℓ

(k))
t−1 ; θ)πℓ(k)

t−1

g(x
(k)
t , ℓ(k)|y1:t; θ)

. (11)

From Equation (10), the predictive function can be approximated by:

f(yt|y1:t−1; θ) ≈ fa(yt|y1:t−1; θ) =

K∑
k=1

f(yt|x(k)t ; θ)f(x
(k)
t |x(ℓ

(k))
t−1 ; θ)πℓ(k)

t−1

g(x
(k)
t , ℓ(k)|y1:t; θ)

, (12)

which in turn can be used to normalize the weights in Equation (11). Usually, K and
L are equal. When Equations (4) and (12) are combined, they produce an unbiased
estimator of the likelihood [15]. Finally, we resample L values from the above sample

to obtain a sample from f(xt|y1:t; θ) corresponding to particles x
(ℓ)
t with weights π

(ℓ)
t =

1/L. This gives us the approximation in Equation (8) which then restarts the procedure
for time t+ 1.

The choice of the proposal density g(·) is left completely to the researcher, however
there are a few particular cases for g(·) that receive specific nomenclatures. This is the

4
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case of the generic auxiliary particle filter and the fully adapted particle filter briefly
described below.

Generic Auxiliary Particle Filter

Assume that z
(ℓ)
t is some point estimate (e.g. mean or median) of the distribution of

xt|x(ℓ)t−1. Then, if we approximate g(·) by

g(xt, ℓ|y1:t; θ) ∝ f(yt|z(ℓ)t ; θ)f(xt|x(ℓ)t−1; θ)π
(ℓ)
t−1, for ℓ = 1, . . . , L,

we have what the authors call the generic auxiliary particle filter.

Fully Adapted Particle Filter

Suppose again that we have particles x
(ℓ)
t−1 with attached probabilities π

(ℓ)
t−1. If we

are able to rewrite f(yt|xt; θ)f(xt|x(ℓ)t−1; θ)π
(ℓ)
t−1 as the product g(xt|ℓ, y1:t; θ)g(ℓ|y1:t; θ)

where g(xt|ℓ, y1:t; θ) has a known closed-form (probability density function) easy to
sample from, then the particle filter is fully adapted and, as a consequence, the weights

π
(ℓ)
t−1 have the same value for all ℓ = 1, . . . , L.

3. Adaptive Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm [11] is a Markov Chain Monte Carlo based
method employed to generate random samples from a probability distribution. Suppose
the chain is in the iteration state θm−1 and a value θpm is generated from a proposed
auxiliary distribution qm(θ|θm−1). The new value θpm is accepted with probability:

α(θm−1, θ
p
m) = min

{
1,

f(θpm)

f(θm−1)

qm(θm−1|θpm)

qm(θpm|θm−1)

}
,

and take θm = θm−1 otherwise (see, for example, Tierney [19]). Note that f(·) is the
distribution of interest and, in a Bayesian context, f(·) can be the posterior density.

In adaptive sampling the parameters of the proposal density qm(θ|θm−1) of the MH
algorithm are estimated from the iterates θ1, . . . , θm−1. Under appropriate regularity
conditions (diminishing adaptation) the sequence of iterates θm,m ⩾ 1 converges to
draws from the target distribution [7, 10, 17]. Next, we briefly explain the two proposals
used in this paper.

3.1. Adaptive Random Walk Metropolis

The adaptive random walk Metropolis sampling (ARWMS) algorithm [17] can be
divided into two phases, the first one takes place until iteration m0, defined by the
researcher to start the algorithm, and the second one from iteration m0 to M . For
the first phase of the algorithm, the proposed distribution is given by qm(θ|θm−1) =
N(θm−1; (0.1)

2Id/d), where N(µ; Σ) is a multivariate d-dimensional normal density
function with mean µ and covariance matrix Σ. Id is a d-dimensional identity matrix.

5
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And for the second phase, when m > m0, the proposed distribution is given by:

qm(θ|θm−1) = βN(θm−1; (0.1)
2Id/d) + (1− β)N(θm−1; (2.38

2)Σm/d), (13)

where β is a small positive constant and, in this paper, equals to 0.05. And Σm repre-
sents the covariance matrix estimated, iteratively, through the m − 1 iterations. The
part with less variation (covariance matrix equal to (0.1)2Id/d) avoids the algorithm
getting stuck at problematic values and second part (with the covariance matrix equal
to (2.382)Σn/d) is optimal in a multi-dimensional context [16].

3.2. Adaptive Independent Metropolis Hastings

The adaptive independent Metropolis-Hastings sampling (AIMHS) method [7] can
also be divided into two phases. For both phases, the proposed density is given by a
mixture of four terms according to the equation below:

qm(θ|θm−1) =

4∑
j=1

βjqjm(θ|λjm), (14)

with βj ⩾ 0, for j = 1, . . . , 4 and
∑4

j=1 βj = 1, where λjm holds all parameters of the

density qjm(θ|λjm).
In the first phase, q1m(θ|λ1m) is an initial proposal (via Laplace approximation of

the posterior density or by other methods) and q2m(θ|λ2m) is a heavy tailed version
of the former. The q3m(θ|λ3m) carries the adaptive part of the proposal, being an
estimate of the target density calculated through a normal mixing using k-harmonic
means clustering (each update is done after running a certain amount of iterations
- block scheme). And finally, q4m(θ|λ4m) is a version of q3m(θ|λ3m) with heavy tails.
However, the first phase begins with β3 and β4 being equal to zero until a sufficient
number of iterations is reached to obtain q3m(θ|λ3m) and, consequently, q4m(θ|λ4m).
We start this phase with β1 = 0.8 and β2 = 0.2, then we use β1 = 0.15, β2 = 0.05,
β3 = 0.7 and β4 = 0.1.

And finally, in the second phase, q1m(θ|λ1m) is defined as the last form assumed by
q3m(θ|λ3m) in the first phase. The densities q2m(θ|λ2m) and q4m(θ|λ4m) are constructed
in the same manner as the first phase and q3m(θ|λ3m) is maintained until the next
update (by the block scheme).

3.3. Adaptive Sampling with Simulated Likelihood

The posterior distribution of θ is given by f(θ|y1:n) ∝ f(y1:n|θ)f(θ) and this holds for
the cases where the likelihood function f(y1:n|θ) is calculated exactly (with f(θ) being
the prior distribution). Nonetheless, Andrieu et al. [1] showed that Markov Chain
Monte Carlo samplers still converge to the correct posterior density even when an
unbiased estimator of likelihood, f̂(y1:n|θ), is applied, such as those in Equations (7)
and (12) given by particle filters with finite number of particles.

The simulated likelihood via particle filter algorithms may be seen as f(y1:n|θ, u),
where u is a set of auxiliary variables that are not function of θ such that
f(yt|y1:t−1; θ;u) is equal to fs(yt|y1:t−1; θ) or fa(yt|y1:t−1; θ) obtained from Equations
(7) and (12), respectively. Now, let f(yt|y1:t−1; θ;u) obtained from the particle filter

6
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be the estimate of f(yt|y1:t−1; θ). Then, f̂(y1:n|θ) = f(y1|θ;u)
∏n

t=2 f(yt|y1:t−1; θ;u) is
the unbiased estimate of the likelihood [15] given by f(y1:n|θ).

4. Model Selection

4.1. Estimating the Marginal Likelihood

Marginal likelihoods are often used to compare models and can be seen as the proba-
bility of the data given the model type. Thus the higher its value, the more adjusted
is the model to the data set. Following the previous notation, the marginal likelihood
is given by

f(y1:n) =

∫
f(y1:n|θ)f(θ)dθ. (15)

Suppose that h(θ) is an approximation to f(θ|y1:n) which can be evaluated explicitly.
Bridge sampling [13] estimates the marginal likelihood as follows. Let

t(θ) =

(
f(y1:n|θ)f(θ)

U
+ h(θ)

)−1

,

where U is a positive constant. Let

B =

∫
t(θ)h(θ)f(θ|y1:n)dθ.

Then,

B =
B1

f(y1:n)
where B1 =

∫
t(θ)h(θ)f(y1:n|θ)f(θ)dθ.

Suppose the sequence of iterates {θ(j), j = 1, . . . ,M} is generated from the posterior
density f(θ|y1:n) and a second sequence of iterates {θ̃(k), k = 1, . . . ,K} is generated
from h(θ). Then,

B̂ =
1

M

M∑
j=1

t(θ(j))q(θ(j)), B̂1 =
1

K

K∑
k=1

t(θ̃(k))f(y|θ̃(k))f(θ̃(k)) and f̂BS(y1:n) =
B̂1

B̂

are estimates of B and B1, respectively, while f̂BS(y) is the bridge sampling estimator
of the marginal likelihood f(y1:n).

We take h(θ) from the adaptive independent Metropolis-Hastings (AIMHS) with
mixture of normals proposal. Although U can be any positive constant, it is more
efficient if U is a reasonable estimate of f(y1:n). One way to do so is to take Û =
f(y1:n|θ∗)f(θ∗)/h(θ∗), where θ∗ is the posterior mean of θ obtained from the posterior
simulation.

An alternative method to estimate of the marginal likelihood f(y1:n) is to use impor-
tance sampling [6] based on the proposal distribution h(θ) as before (as the proposal

7
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from the AIMHS). That is,

f̂IS(y1:n) =
1

K

K∑
k=1

f(y1:n|θ(k))f(θ(k))
h(θ(k))

.

Since the proposal distribution of the AIMHS has at least one heavy tailed compo-
nent, the importance sampling ratios are likely to be bounded and well-behaved.

4.2. Likelihood Based Information Criteria

In the adaptive Metropolis-Hastings sampling, the log likelihood function is always
evaluated as a component of the posterior distribution. In that case, each draw θ(j)

from the posterior distribution produces also the corresponding log-likelihood value,
log f(y1:n|θ(j)). That can in turn be used to compute several likelihood based infor-
mation criteria.

Let f(y1:n|θℓ,Mℓ) be the likelihood for model Mℓ and define the deviance as
D(θℓ) = −2 log f(y1:n|θℓ,Mℓ). The deviance information criterion (DIC) is defined
as

DIC(Mℓ) = 2E[D(θℓ)|y1:n,Mℓ]−D(E[θℓ|y1:n,My]). (16)

The draws from θ
(j)
ℓ and log f(y1:n|θ(j)ℓ ,Mℓ), j = 1, . . . ,M , can be used to approxi-

mate E[D(θℓ)|y1:n,Mℓ] and E[θℓ|y1:n,Mℓ] by M−1
∑M

j=1D(θ
(j)
ℓ ) and M−1

∑M
j=1 θ

(j)
ℓ ,

respectively. Finally, approximations to DIC can be easily derived. The estimation d̂ℓ
of the number of model parameters on the DIC is given by d̂ℓ = E[D(θℓ)|y1:n,Mℓ]−
D(E[θℓ|y1:n,My]). Thus, DIC may be rewritten as DIC = D(E[θℓ|y1:n,My]) + 2d̂ℓ.

Similarly, the Akaike information criterion (AIC), the Bayesian information criterion
(BIC), their expected versions, EAIC and EBIC, can also be defined. Note that given
a set of models for a given data set, the lowest value of a criterion indicates the best
model (but different criteria may not lead to different models). For more details on
these information criteria, see [18] and references therein.

5. Modelling Volatility

Most financial studies focus on the analysis of returns series rather than the use of
asset prices series. The reason we use a series of returns has two factors, the returns
information serves the interests of investors and has more interesting statistical prop-
erties than the price series. Thus, let Pt be the price of an asset at time t, the log-return
at time t is given by: yt = log(Pt)− log(Pt−1), which is used in our applications.

5.1. Generalized Autoregressive Conditionally Heteroscedastic Model
with Noise

A generalized autoregressive conditionally heteroscedastic (GARCH) model [5] is used
to model the variance of a time series using values of the past squared means of
the observations and past variances. The observation and system equations of the

8
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GARCH(1,1) model with noise are given by:

yt = xt + ϵt, where ϵt ∼ N (0, σ2)

xt+1 = ωt, where ωt ∼ N (0, τ2t (xt))

τ2t+1 = β0 + β1x
2
t + β2τ

2
t ,

where N (µ, σ2) is the Gaussian distribution with mean µ and variance σ, respectively.
This model has the following restrictions on the parameters: σ2 > 0, βj > 0 for
j = 0, 1, 2 and β1+β2 < 1 (stationary condition). Thus, we assume the following prior
distribution: σ2 ∼ HN (c21), β0 ∼ HN (c22), (β1, β2) ∼ U({over the triangle defined
by (0,0), (0,1) and (1,0)}), and x0 ∼ N (0, τ20 ) with τ20 = β0/(1 − β1 − β2), where
HN (c2i ), i = 1, 2, is a half-normal distribution with location parameter set to 0 and
c2i , i = 1, 2, as the scale parameter. Here, U denotes a continuous uniform distribution.

5.2. Stochastic Volatility Model and Its Variants

The observation and system equations of the stochastic volatility (SV) model is given
by [12]:

yt = ext/2ϵt

xt+1 = ξt+1 + ωt, where ξt+1 = α+ ϕ(xt − α)

and ϵt is the observation error with mean 0 and variance 1.
First, we consider that ϵt and ωt are independent, with ωt ∼ N (0, τ2) and ϵt can

be distributed as a standard normal distribution, N (0, 1), a standard skew normal
distribution [3], denoted as SN (λ, 0, 1), a t distribution with 3 degrees of freedom
(t(3)) or a skew t distribution [4] also with 3 degrees of freedom, denoted as St(λ, 3),
where λ is a parameter of skewness. Additionally, ϵt and ωt may have a bivariate normal
distribution with correlation ρ and this model is known as a stochastic volatility model
with leverage effect.

To complete our model specification, we assume the following prior distribution:
τ2 ∼ IG(a1, b1), ϕ ∼ Beta(a2, b2), α ∼ N (a3, b

2
3), λ ∼ N (a4, b

2
4), x0 ∼ N (α, τ2/(1 +

ϕ2)), where IG(a1, b1) is the inverse-gamma distribution with a1 and b1 as shape and
scale parameters; and Beta(a2, b2) is the beta distribution with a2 and b2 as shape
parameters.

6. Applications

In this section we carry out a simulation study that consist of estimating the param-
eters of five simulated series for GARCH(1,1) model with noise, stochastic volatility
model with Gaussian noise and stochastic volatility model with leverage. Each simu-
lated series has 1.000 observations. Next, we model daily log-return data of three stock
market indexes - namely BOVESPA, NASDAQ and S&P500 - from January 2012 to
March 2016 resulting in a time series with more than one thousand observations each.

Note that it is possible to estimate the likelihood of the GARCH with noise model by
applying both particle filters (SIR and ASIR). In addition, for this model, it is possible
to apply the fully adapted particle filter (see A). However, it is not possible to use a
fully adapted particle filter for the SV model, so we tried to apply the generic version

9
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of ASIR, but the estimates, when found, were not as expected and the computational
time spent extremely high. Therefore, we have chosen to apply only SIR method for
the SV models (see B for the SV model with leverage). In addition, to determine the
number of particles of the filters, we use the methodology proposed by Pitt et al. [15].
In our applications, we set c1 = c2 = 10, a1 = b1 = a2 = b2 = 1, a3 = a4 = 0 and
b3 = b4 = 106 as parameters for the prior distributions.

The estimation strategy used in all datasets and models is to first create an initial
estimate for the parameters and covariance matrix through the ARWMS, then use
them as initial values in the AIMHS. Therefore, all results shown below refer only for
the last part when we use AIMHS.

6.1. Simulation

The main objective of this simulation study is to verify if the algorithm is actually
estimating the true parameters. For this, we generate 5 time series of the intended
models and observe if the estimation is being done correctly. The parameters used to
generate the data of GARCH(1,1) model with noise were σ2 = 0.00009, β0 = 0.000002,
β1 = 0.15 and β2 = 0.84. For the stochastic volatility model with Gaussian noise were
τ2 = 0.20, α = −9.6 and ϕ = 0.84. And for the stochastic volatility model with
leverage were τ2 = 0.11, α = −11, ϕ = 0.98 and ρ = −0.7. To obtain the results of
this section, we ran all AMH algorithms with 50.000 iterations with the first half of
them being discarded for the calculation of the final estimates.

In Tables 1, 2, 3 and 4 we can observe the posterior mean, median, standard devi-
ation and credibility interval of 95% (CI0.025 and CI0.975 are, respectively, the lower
limit and upper limit of the interval) for the parameters of each model.

Table 1. Posterior mean, median, standard deviation and credibility interval for the parameters of

GARCH(1,1) model with noise using SIR filter.

Replica Parameters
Posterior estimations

Mean Std. dev. CI0.025 Median CI0.975

1

σ2 0.0000630 0.0000258 0.0000076 0.0000637 0.0001097

β0 0.0000037 0.0000020 0.0000009 0.0000033 0.0000090

β1 0.1463449 0.0453058 0.0790899 0.1408561 0.2472860

β2 0.8290534 0.0459327 0.7252073 0.8343345 0.8992350

2

σ2 0.0000883 0.0000253 0.0000319 0.0000910 0.0001317

β0 0.0000061 0.0000053 0.0000010 0.0000046 0.0000220

β1 0.2257102 0.1003751 0.0829156 0.2067775 0.4762093

β2 0.7226548 0.1125832 0.4477203 0.7420469 0.8822469

3

σ2 0.0000529 0.0000269 0.0000059 0.0000524 0.0001051

β0 0.0000037 0.0000023 0.0000008 0.0000033 0.0000100

β1 0.0905114 0.0390999 0.0337985 0.0833210 0.1868716

β2 0.8807635 0.0440161 0.7734476 0.8890788 0.9410084

4

σ2 0.0000546 0.0000325 0.0000045 0.0000549 0.0001182

β0 0.0000049 0.0000025 0.0000009 0.0000045 0.0000093

β1 0.1269757 0.0345311 0.0762891 0.1201576 0.2073463

β2 0.8506429 0.0345098 0.7679393 0.8602096 0.9070856

5

σ2 0.0000718 0.0000213 0.0000256 0.0000741 0.0001085

β0 0.0000032 0.0000021 0.0000008 0.0000027 0.0000088

β1 0.1865094 0.0585892 0.0933376 0.1799826 0.3186721

β2 0.8007600 0.0591066 0.6671012 0.8084501 0.8941634
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In order to obtain the estimates of the GARCH(1,1) model with noise parameters
using SIR filter (Table 1), 3.000 particles were used for the preliminary part (AR-
WMS) and 2.000 in the final part (AIMHS). Notice that for all replicas, all credibility
intervals contain the true parameter values, which indicates satisfactory behaviour of
our approach.

However, to obtain the estimates of the GARCH(1,1) model with noise parameters
using ASIR filter, 50 particles were used for both the preliminary and final parts. Note
that this algorithm is much more efficient than the one using SIR filter, because it uses
much fewer particles (saves computational time) and obtains results as satisfactory as
the previous one, as can be verified in Table 2.

Table 2. Posterior mean, median, standard deviation and credibility interval for the parameters of

GARCH(1,1) model with noise using ASIR filter.

Replica Parameters
Posterior estimations

Mean Std. dev. CI0.025 Median CI0.975

1

σ2 0.0000622 0.0000253 0.0000107 0.0000633 0.0001090

β0 0.0000038 0.0000020 0.0000010 0.0000034 0.0000086

β1 0.1473738 0.0469848 0.0755105 0.1413896 0.2562844

β2 0.8276800 0.0473448 0.7176016 0.8336273 0.9008290

2

σ2 0.0000904 0.0000251 0.0000344 0.0000935 0.0001340

β0 0.0000057 0.0000051 0.0000010 0.0000042 0.0000192

β1 0.2363900 0.1041273 0.0817055 0.2210820 0.4786691

β2 0.7152533 0.1143224 0.4405373 0.7351936 0.8782488

3

σ2 0.0000514 0.0000279 0.0000034 0.0000505 0.0001068

β0 0.0000038 0.0000024 0.0000007 0.0000032 0.0000099

β1 0.0903956 0.0400999 0.0364844 0.0820313 0.1903948

β2 0.8812510 0.0437155 0.7677189 0.8886806 0.9442178

4

σ2 0.0000585 0.0000297 0.0000050 0.0000585 0.0001154

β0 0.0000045 0.0000026 0.0000009 0.0000041 0.0000108

β1 0.1307535 0.0370271 0.0707828 0.1264888 0.2162167

β2 0.8482669 0.0385817 0.7639958 0.8517576 0.9141380

5

σ2 0.0000718 0.0000209 0.0000262 0.0000734 0.0001082

β0 0.0000032 0.0000021 0.0000008 0.0000027 0.0000085

β1 0.1895439 0.0600698 0.0929562 0.1821909 0.3298645

β2 0.7979995 0.0612526 0.6584258 0.8055708 0.8956539

Table 3 shows the results of the estimations made for the parameters of the SV
model with Gaussian noise using SIR filter. For this model, we use 350 particles in
both algorithms (first ARWMS, then AIMHS). Notice that all credibility intervals
also contain the true values of the parameters. Finally, Table 4 refers to results on
the SV model with leverage using SIR filter estimations where 1.750 particles for both
ARWMS and AIMHS.

This simulation study is not exhaustive and does not include all models used in
the real data application. However, it can be seen that the combined AMH with SIR
or ASIR algorithms are able to recover the true values of the parameters and it is
expected that the same behaviour is found in all other models.
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Table 3. Posterior mean, median, standard deviation and credibility interval for the parameters of SV model

with Gaussian noise using SIR filter.

Replica Parameters
Posterior estimations

Mean Std. dev. CI0.025 Median CI0.975

1

τ2 0.2209872 0.0537652 0.1344007 0.2140449 0.3433991

ϕ 0.8233984 0.0444285 0.7214496 0.8283471 0.8959334

α -9.6640155 0.1045723 -9.8683794 -9.6628164 -9.4591694

2

τ2 0.2307925 0.0617954 0.1360358 0.2217310 0.3726260

ϕ 0.8234385 0.0460480 0.7156061 0.8289964 0.8975777

α -9.4129225 0.1029042 -9.6095164 -9.4162568 -9.2053341

3

τ2 0.2571744 0.0593681 0.1613926 0.2504576 0.3912914

ϕ 0.8386231 0.0371395 0.7578607 0.8417097 0.9017371

α -9.5249343 0.1145634 -9.7559453 -9.5251857 -9.2956183

4

τ2 0.2448653 0.0675171 0.1391726 0.2355385 0.4004809

ϕ 0.7908226 0.0511464 0.6745926 0.7955630 0.8759804

α -9.7202447 0.0934316 -9.9040991 -9.7201533 -9.5385561

5

τ2 0.2616024 0.0633620 0.1616784 0.2547169 0.4088322

ϕ 0.7973314 0.0450955 0.6948007 0.8012077 0.8710793

α -9.7114517 0.0956238 -9.8984855 -9.7100075 -9.5280789

Table 4. Posterior mean, median, standard deviation and credibility interval for the parameters of SV model

with leverage using SIR filter.

Replica Parameters
Posterior estimations

Mean Std. dev. CI0.025 Median CI0.975

1

τ2 0.1300850 0.0208358 0.0940193 0.1280196 0.1747818

ϕ 0.9852177 0.0061611 0.9722945 0.9857468 0.9956883

α -10.850556 1.0132163 -13.471119 -10.649624 -9.4863125

ρ -0.7031984 0.0619436 -0.8091877 -0.7079091 -0.5718210

2

τ2 0.1167414 0.0187372 0.0850963 0.1149657 0.1584491

ϕ 0.9820628 0.0059646 0.9697027 0.9823247 0.9928902

α -10.814652 0.5032284 -11.944318 -10.776913 -9.9164817

ρ -0.7130920 0.0630058 -0.8197065 -0.7176833 -0.5789504

3

τ2 0.1403466 0.0216788 0.1036933 0.1376562 0.1888396

ϕ 0.9813912 0.0056285 0.9697771 0.9815278 0.9927614

α -10.071973 0.6470769 -11.125004 -10.131074 -8.6076082

ρ -0.6913779 0.0585517 -0.7884205 -0.6965849 -0.5628501

4

τ2 0.1404871 0.0204211 0.1057169 0.1382987 0.1849773

ϕ 0.9823382 0.0047879 0.9726977 0.9824653 0.9913064

α -10.921940 0.4967491 -11.980299 -10.870996 -10.062043

ρ -0.7975224 0.0453794 -0.8753869 -0.8017720 -0.6978566

5

τ2 0.0928752 0.0162011 0.0666495 0.0915056 0.1293698

ϕ 0.9679708 0.0096341 0.9468060 0.9687180 0.9846366

α -10.848615 0.2664703 -11.364805 -10.853792 -10.320197

ρ -0.6733129 0.0858376 -0.8204434 -0.6786633 -0.4914737
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6.2. Real data

As said before, we model daily log-return data of BOVESPA, NASDAQ and S&P500
indexes from January 2012 to March 2016. Figure 1 shows the prices and log returns
for all indexes. For all series, t = 200 corresponds to October 2012, t = 400 to July
2013, t = 600 to May 2014, t = 800 to February 2012 and t = 1000 to December 2015.
As expected, the log returns are around zero with increasing volatilities when prices
tend to decrease.
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Figure 1. BOVESPA, NASDAQ and SP500 price and log-return series.

Table 5 presents a few descriptive statistics of all log return series. They have means
and medians about zero and positive excess kurtoses. However, NASDAQ and S&P500
have negative skewness whilst BOVESPA has positive skewness. Thus, all log return
series present evidence of non-normality.

Table 5. Descriptive statistics of the indexes return series.

Statistics
Indexes

BOVESPA NASDAQ S&P500

Mean -0.00014 0.00057 0.00045

Standard Deviation 0.01481 0.00958 0.00830

Median -0.00096 0.00088 0.00049

Skewness 0.24131 -0.32704 -0.24698

Kurtosis 0.75280 1.44709 1.66029

Next, we apply a few volatility models to these data sets using AMH algorithms
combined with particle filters methods. In order to perform the model comparisons by
means of likelihood-based information criteria and marginal likelihoods, we initially
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estimated the parameters for our data sets (BOVESPA, NASDAQ and S&P500 return
series) using GARCH and SV models presented in Sections 5.1 and 5.2, respectively.
We ran all AMH algorithms with 200.000 iterations with the first half of them being
discarded for the calculation of final estimates. In addition, we first generate an initial
estimate of the parameters and covariance matrix using the ARWMS method to use
them as initial values in AIMHS method.

Furthermore, we are interested in the results given by the output of the AIMHS
since this algorithm allows computations of all model selection criteria in Section 4.
Remember that the lowest value of a likelihood-based information criterion indicates
the best model whilst largest value of a marginal likelihood, such as those given by
f̂BS(y) and f̂IS(y), results also the best model. The values in bold refer to the model
most adjusted to the data according to the respective selection criteria.

To obtain the results shown in Table 6, we used the following quantity of particles
in all filters: 2.000 for the GARCH(1,1) model with noise and SIR, 50 for the same
model with ASIR, 200 for the SV(N ) model, 50 for the SV(t3) model, 230 for the
SV(SN ) model, 45 for the SV(St3) model and 350 for the SV with leverage model.
Note that all model selection criteria indicate the GARCH model with noise as the
most adjusted to BOVESPA return series - either with SIR or ASIR.

Table 6. Model comparisons by means of likelihood-based information criteria and marginal likelihoods for

BOVESPA series.
Model PF AIC BIC EAIC EBIC DIC f̂BS(y) f̂IS(y)

GARCH
SIR -5998 -5978 -6001 -5981 -6012 2.2× 10−230 2.1× 10−230

ASIR -5990 -5970 -6001 -5981 -6020 2.3× 10−230 2.2× 10−230

SV(N )

SIR

-5975 -5960 -5977 -5962 -5985 1.9× 10−232 1.9× 10−232

SV(t3) -5910 -5895 -5908 -5893 -5911 5.5× 10−246 5.7× 10−246

SV(SN ) -5974 -5955 -5974 -5954 -5982 3.6× 10−235 3.5× 10−235

SV(St3) -5897 -5877 -5901 -5881 -5912 2.2× 10−249 2.3× 10−249

SV lev -5989 -5970 -5987 -5967 -5992 1.9× 10−231 2.2× 10−231

Therefore, the posterior mean, median, standard deviation and credibility interval
of 95% of the GARCH(1,1) model with noise are given in Table 7.

Table 7. Posterior mean, median, standard deviation and credibility interval for the parameters of

GARCH(1,1) model with noise using ASIR applied to BOVESPA series.

Parameters
Summary of the posterior distribution

Mean Std. dev. CI0.025 Median CI0.975
σ2 0.0000913 0.0000259 0.0000294 0.0000942 0.0001342

β0 0.0000020 0.0000015 0.0000005 0.0000016 0.0000060

β1 0.1512039 0.0517068 0.0676217 0.1448260 0.2735384

β2 0.8408180 0.0512353 0.7203291 0.8471988 0.9208007

For the models applied to NASDAQ return series, we used the following quantity
of particles in all filters: 2.000 for the GARCH(1,1) model with noise and SIR, 75 for
the same model with ASIR, 350 for the SV(N ) model, 200 for the SV(t3) model, 400
for the SV(SN ) model, 200 for the SV(St3) model and 400 for the SV with leverage
model. Model comparison results are shown in Table 8.

In addition, with the exception of DIC that indicated GARCH with ASIR as the
model most adjusted to the data, all criteria pointed to the SV model with ϵt having
a skew-normal distribution. Now, when considered only marginal likelihood criterion
for model selection, stochastic volatility model with skew Gaussian noise is considered
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Table 8. Model comparisons by means of likelihood-based information criteria and marginal likelihoods for

NASDAQ series.

Model PF AIC BIC EAIC EBIC DIC f̂BS(y) f̂IS(y)

GARCH
SIR -6942 -6922 -6941 -6921 -6948 1.3× 10−25 1.3× 10−25

ASIR -6912 -6891 -6940 -6921 -6978 1.4× 10−25 1.3× 10−25

SV(N )

SIR

-6955 -6940 -6953 -6938 -6957 1.6× 10−19 1.6× 10−19

SV(t3) -6906 -6891 -6907 -6893 -6915 8.6× 10−30 8.4× 10−30

SV(SN ) -6975 -6955 -6971 -6951 -6976 7.1× 10−18 6.7× 10−18

SV(St3) -6924 -6905 -6920 -6900 -6923 3.6× 10−29 4.1× 10−29

SV lev -6954 -6934 -6957 -6937 -6968 9.3× 10−20 8.8× 10−30

the best one applied to NASDAQ data. Hence, the posterior mean, median, standard
deviation and credibility interval of 95% of this model are given in Table 9.

Table 9. Posterior mean, median, standard deviation and credibility interval for the parameters of stochastic

volatility model with skew Gaussian noise using SIR applied to NASDAQ series.

Parameters
Summary of the posterior distribution

Mean Std. dev. CI0.025 Median CI0.975
τ2 0.2032857 0.0590969 0.1139529 0.1945681 0.3426287

ϕ 0.8365621 0.0441244 0.7357273 0.8422046 0.9071204

α -9.5973375 0.1023758 -9.7981681 -9.5970571 -9.3955176

λ 0.0014686 0.0003089 0.0008629 0.0014690 0.0020713

Finally, for the models applied to S&P500 return series, we used the following
quantity of particles in all filters: 4.000 for the GARCH(1,1) model with noise and
SIR, 50 for the same model with ASIR, 250 for the SV(N ) model, 200 for the SV(t3)
model, 400 for the SV(SN ) model, 200 for the SV(St3) model and 1.750 for the SV
with leverage model. Results in Table 10 indicates that, among the models applied
to S&P500 return series, all selection criteria point to the SV model with leverage as
the model most adjusted to the data, except for the DIC that, as for NASDAQ data,
indicated GARCH with ASIR.

Table 10. Model comparisons by means of likelihood-based information criteria and marginal likelihoods for

S&P500 series.
Model PF AIC BIC EAIC EBIC DIC f̂BS(y) f̂IS(y)

GARCH
SIR -7275 -7255 -7273 -7253 -7279 6.0× 10−171 6.0× 10−171

ASIR -7184 -7164 -7273 -7253 -7370 6.5× 10−171 6.4× 10−171

SV(N )

SIR

-7298 -7283 -7295 -7280 -7297 1.1× 10−162 1.1× 10−162

SV(t3) -7247 -7232 -7245 -7230 -7249 6.5× 10−174 6.2× 10−174

SV(SN ) -7309 -7289 -7309 -7289 -7317 5.4× 10−162 5.2× 10−162

SV(St3) -7251 -7231 -7250 -7231 -7257 7.0× 10−175 8.2× 10−175

SV lev -7319 -7300 -7323 -7303 -7335 5.0× 10−158 5.6× 10−158

Again, the marginal likelihood criterion indicates the stochastic volatility model
with leverage as the best one applied to S&P500 data. Therefore, the posterior mean,
median, standard deviation and credibility interval of 95% of this model are given in
Table 11.

It is worth mentioning that applications were performed in three real series be-
cause they had different behaviours, which was confirmed by the results of the model
comparisons, which pointed to different models in each of the series.
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Table 11. Posterior mean, median, standard deviation and credibility interval for the parameters of stochastic

volatility model with leverage using SIR applied to S&P500 series.

Parameters
Summary of the posterior distribution

Mean Std. dev. CI0.025 Median CI0.975
τ2 0.1082816 0.0204612 0.074450 0.1063194 0.1550263

ϕ 0.9828918 0.0155592 0.9423327 0.9874117 0.9990852

α -11.096292 1.8050948 -16.746751 -10.532022 -9.3502158

ρ -0.6686287 0.0956189 -0.8154062 -0.6827698 -0.4396470

7. Concluding remarks

This paper deals with modelling volatility through GARCH(1,1) model with noise and
a few stochastic volatility models. These models are in the class of non-linear or non-
Gaussian state space models. In order to infer on the static parameters and the state
vector, we have proposed to work with particle filters and adaptive Metropolis-Hastings
algorithms. The particle filters are suitable for obtaining the filtering distributions as
well as to obtain an unbiased estimate of the likelihood. The latter is coupled into
an adaptive Metropolis-Hastings scheme to sample from the posterior of the static
parameters. The proposed method used in this paper is a powerful tool since it allows
inference in a large class of models, such as change the prior distributions, without
much effort in implementing the MCMC or to worry about proposal distributions
and how to choose the hyperparameters. On the other hand, due to generality of our
proposed approach, the resulting algorithm may be slow compared to other known
methods. In any case, theoretical properties guarantees that the algorithm really draws
a sample from the correct posterior distribution.

Moreover, we have also applied the mentioned models above to simulated series
and three log-returns data sets - namely BOVESPA, NASDAQ and S&P500. In our
applications and methodology, we computed likelihood-based information criteria and
marginal likelihoods to do model comparisons. From the Bayesian perspective and in
our algorithms, all these measures for model comparisons are easily obtained in the
adaptive independent Metropolis-Hastings sampling, which is another advantage of
our approach.

For future work, there is a need of more detailed versions of particle filters in order
to reduce the variability of the likelihood estimator, thus improving on the conver-
gence and other properties of the adaptive Metropolis-Hastings sampling. In addition,
the methodology may also be applied to other class of state space models, including
multivariate ones.
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Appendix A. Fully Adapted Particle Filter for the GARCH(1,1) with
Noise

First, consider the GARCH(1,1) model with noise given in Section 5.1. Moreover, we
omit the dependence of τ2t on xt−1 for while. It follows that

−2 log(f(yt|xt)f(xt|x(ℓ)t−1)) = κ+ log σ2 + log τ
2(ℓ)
t +

(yt − xt)
2

σ2
+

x2t

τ
2(ℓ)
t

= log τ2∗t +
1

τ2∗t

(
xt − δ

(ℓ)
t

)2
+∆

(ℓ)
t ,
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where κ is a constant,

τ2∗t =

(
1

σ2
+

1

τ
2(ℓ)
t

)−1

and δ
(ℓ)
t =

ytτ
2∗
t

σ2

while

∆
(ℓ)
t = κ+ log σ2 + log τ

2(ℓ)
t − log τ2∗t +

y2t
σ2

− [δ
(ℓ)
t ]2

τ2∗t
.

Hence,

g(ℓ|y1:t) ∝ exp

(
−∆

(ℓ)
t

2

)
π
(ℓ)
t−1 and g(xt|ℓ, y1:t) ∼ N(δ

(ℓ)
t , τ2∗t ).

Appendix B. Standard Particle Filter for the SV with Leverage

Here, consider the stochastic volatility model with leverage given in Section 5.2. It
follows that

f(yt, xt|xt−1) =
1

2πext/2τ
√

1− ρ2
exp(−ut/2),

where

ut =
1

1− ρ2

[
y2t
ext

+
(xt − ξt)

2

τ2
− 2ρ

yt

ext/2

(xt − ξt)

τ

]

=
1

1− ρ2

[
1

ext

(
yt − ρ

(xt − ξt)

τ
ext/2

)2
]
+

(xt − ξt)
2

τ2
− κ(xt),

where κ(xt) = ρ2ext(xt − ξt)
2/τ2. Taking into consideration that

f(yt, xt|xt−1) = f(yt|xt, xt−1)f(xt|xt−1),

thus

yt|xt, xt−1 ∼ N
(
ρ
(xt − ξt)

τ
ext/2, ext(1− ρ2)

)
and xt|xt−1 ∼ N (ξt, τ

2).

Note that κ(xt) is treated as a constant of f(yt|xt, xt−1).
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